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Heterostructures such as resonant tunneling diodes, quantum well photodetectors and lasers, and cascade lasers
break the symmetry of the crystalline lattice. Such break in lattice symmetry causes a strong interaction of
heavy-, light- and split-off hole bands. A resonant tunneling diode is used as a vehicle to study hole transport in
heterostructures including the subband dispersion transverse to the main transport direction. Four key findings
are demonstrated: 1) the heavy and light hole interaction is shown to be strong enough to result in dominant
current flow off the � zone center (more holes flow through the structure at an angle than straight through),
2) explicit inclusion of the transverse momentum in the current integration is needed, 3) most of the current
flow is due to injection from heavy holes in the emitter, and 4) the dependence on the angle � of the trans-
verse momentum ~k is weak. Two bandstructure models are utilized to demonstrate the underlying physics: 1)
independent/uncoupled heavy-, light- and split-off bands, and 2) second-nearest neighbor sp3s* tight-binding
model. Current-voltage (I-V) simulations including explicit integration of the total energy E, transverse mo-
mentum j~kj and transverse momentum angle � are analyzed. An analytic formula for the current density J(k)
as a function of transverse momentum k is derived and utilized to explain the three independent mechanisms
that generate off zone center current flow: 1) non-monotonic (electron-like) hole dispersion, 2) different quan-
tum well and emitter effective masses, and 3) momentum dependent quantum well coupling strength. The
analytic expression is also used to generate a complete I-V characteristic that compares well to the full numer-
ical solution. The Fermi level and temperature dependence on the I-V is examined. Finally a simulation is
compared to experimental data.
72.80.Ey, 73.40.Gk,71.20.-b,73.20.At

I. INTRODUCTION

A. Nanoelectronic Modeling (NEMO)

While silicon device technology dominates the commer-
cial microprocessor and memory market, semiconductor het-
erostructure devices maintain their niche for light detection,
light emission, and high-speed data transmission. Material
variations on an atomic scale enable the quantum mechani-
cal functionality of devices such as resonant tunneling diodes
(RTDs), quantum well infrared photodetectors, quantum well
lasers, and heterostructure field effect transistors. The pro-
duction of these heterostructure devices is enabled by the ad-
vancement of material growth techniques, which opened a
vast design space of material compositions, layer thicknesses
and doping profiles. The full experimental exploration of this
design space is unfeasible and a reliable design tool is needed.

The need for a device modeling tool has prompted a de-
vice modeling project at the Central Research Laboratory of
Texas Instruments (which transferred to Raytheon Systems in
1997). NEMO was developed as a general-purpose quan-
tum mechanics-based 1-D device design and analysis tool
from 1993-97. The tool is available to US researchers by re-
quest on the NEMO web site1. NEMO is based on the non-
equilibrium Green function approach, which allows a funda-
mentally sound inclusion of the required physics: bandstruc-
ture, scattering, and charge self-consistency. The theoretical

approach is documented in references [ 2, 3] while some of
the major simulation results are documented in references [
4–10]. NEMO development is presently continued at the Jet
Propulsion Laboratory towards the modeling of light detection
and emission devices.

The work presented here was enabled by the implementa-
tion of parallelism in NEMO on simultaneous, various lev-
els: voltage, transverse momentum integration and energy in-
tegration. The use of massively parallel computers enabled
the thorough exploration of the state space in total energy E
and transverse momentum k for a significant number of bias
points.

B. Why Quantum Mechanical Hole Transport ?

In most high-speed quantum devices an attempt is made to
utilize the high electron mobility in III-V materials. Quantum
mechanical carrier transport research has, therefore, focused
on pure electron transport. Optical devices, however, typically
involve quantum states in the valence bands. To begin the
study of quantum mechanical electron and hole transport in
laser structures using NEMO the pure hole transport in a hole-
doped RTD is examined.

It is well known that hole transport is strongly influenced
by coupling between the light hole (LH), heavy hole (HH)
and split-off (SO) valence bands11–14. Band coupling occurs
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due to translational symmetry breaking inherent in any inter-
esting electronic device. Valence bands in semiconductors are
also intrinsically coupled via the spin-orbit interaction. En-
velope function representations have been used extensively in
much of the published work on hole transport 15–22. This pa-
per is an extension of previous work by Kiledjian et.al. who
use a nearest-neighbor sp3s* empirical tight-binding basis
which includes the spin-orbit interaction to all orders and in-
corporates wavefunction coupling at interfaces through orbital
interactions23;24. To better fit the complicated valence band
dispersion we include both nearest and 2nd-nearest neighbor
interactions25. Subband energies and widths are calculated26

as a function of transverse momentum allowing for a detailed
and intuitive analysis of hole transport mechanisms.

C. Overview of the Paper

Sections II and III discuss approximations for calculating
current density and details our approach for explicitly includ-
ing its dependence on transverse momentum. Section IV is a
brief review of the complexities involved in quantum transport
through valence band derived states. The density of states is
used to identify the symmetry and number of nodes of the con-
fined states and it is related to the transmission coefficients.
Hole anisotropy and it’s effect on quantum well subbands is
discussed. The complicated subband structure results in a
strong dependence of transmission characteristics as a func-
tion of transverse momentum. Section V details features in
current density vs. total energy and transverse momentum for
a simple RTD structure. Failure of the Esaki-Tsu approxima-
tion and significant current contributions off zone-center are
shown. In section VI, an analytic expression for current den-
sity as a function of transverse momentum is derived and used
to better understand the numerical results of section V. Sec-
tions VIII and IX discusses the Emitter Fermi level and tem-
perature dependence of hole transport, respectively. In section
X we test the validity of the axial symmetry approximation by
calculating the dependence of the current density on the axial
incidence angle. A comparison between theory and experi-
ment is examined in section XI. Detailed discussions on the
bias dependence of the resonance energies and widths are de-
ferred to Appendices A and B, repectively. Appendix C tab-
ulates the sp3s* second nearest neighbor parameters used in
this work and lists the associated material parameters such as
bandgaps and effective masses.

II. THE CENTRAL QUANTITY: CURRENT DENSITY J(K)

Typical high performance RTD’s used for memory27 and
logic28 devices are based on electron (rather than hole) trans-
port in direct gap material systems. Electron states are occu-
pied close to the � point and the bands can typically assumed
to be isotropic29. For high current density devices operated
at room temperature the effects of incoherent scattering inside

the central RTD region5;8–10 have been shown to be negligi-
ble while bandstructure effects such an non-parabolicity and
complex band wrapping are dominant5–7. In such a case the
current can be computed2;7 using an expression of the form

J /

Z
dE

Z
d�

Z
kdkT (E; k; �) (fL(E)� fR(E)) (1)

/

Z
dE

Z
kdkT (E; k) (fL(E) � fR(E)) (2)

=

Z
dE

Z
kdkJ(E; k) (3)

where k is the electron momentum transverse to the transport
direction normalized to the unit cell a by �

a
, � the momentum

angle, E is the total energy, T the transmission coefficient,
and fL=R the Fermi function in the left/right contact. A dis-
cussion of the dependence of the transmission coefficient on
� is deferred to section X and for now it is assumed that the
transmission coefficient is independent of �.

The transmission coefficient T (E; k) may be expensive
to compute, since it may contain sharp resonances (10�9 �
10�3 eV ) that have to be resolved well in an energy range of
typically 1 eV . During the NEMO project algorithms that lo-
cate26 and resolve30 the resonances expedite the computation
of T (E; k = const). It is therefore convenient for numeri-
cal reasons to reverse the order of integration in Eq. 3 and to
define an intermediate quantity J(k) as follows:

J(k) =

Z
dEJ(E; k) (4)

such that J /

Z
kdkJ(k) (5)

This quantity J(k) is not only numerically convenient, but
it also bears physical insight as to “where” the carrier trans-
port occurs in k-space. It will be shown analytically in Sec-
tions VI A and VII that for an electron RTD the function J(k)
is peaked at k = 0 and monotonically decreasing with k.
This behavior indicates that the dominant current contribu-
tion arises from carriers at the Brillouin zone center �. For
holes, however, it will be shown that J(k) can exhibit sharply
peaked features outside (k > 0) the Brillouin zone center �.
This indicates that more holes traverse the structure at an an-
gle than straight through the heterointerfaces. This is one of
the central results of this paper.

III. TSU-ESAKI FORMULA

One common approach in reducing the required CPU time
needed to compute a complete I-V characteristic is the as-
sumption of parabolic transverse subbands such that the trans-
mission coefficient has a analytic, parabolic transverse mo-
mentum dependence: T (E; k) = T (E � �h2k2=2m�; k = 0).
Under this assumption the transverse momentum integration
in Eq. 2 can be carried out analytically to result in the so-
called Tsu-Esaki31 formula:
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J / �2D

Z
dET (E; k=0)ln

�
1 + e(EF�E)=kT

1 + e(EF�E�qV )=kT

�
(6)

The Tsu-Esaki 1-D integration formula is capable of pro-
viding qualitatively correct results for electron devices given
the restrictive assumption that subband alignment is not the
primary transport mechanism32–34;7. Technologically rele-
vant RTDs that show negative differential resistance at room
temperature all exhibit a triangular emitter well such that
there is a large 2-D to 2-D subband tunneling contribution
from emitter to central resonance. To achieve quantitative
agreement6;7 between simulation and experimental data for
such RTDs full 2-D integrations in energy E and transverse
momentum k according to Eq. 3 must be performed. This
paper will show in section VII A an example of good agree-
ment between the Tsu-Esaki approximation and the full band
integration for a structure that has flat band conditions in the
emitter and therefore provides a 3-D emitter to 2-D quantum
well tunneling process. We emphasize here in advance that
such a simulation is included for paedagogical reasons only,
to show the simple behavior of J(k) for electrons. The rest of
the paper underlines that the analytical Tsu-Esaki integration
over the transverse momentum becomes completely invalid
for hole transport23;24.

IV. SPECTRAL QUANTITIES: DENSITY OF STATES,
TRANSMISSION, AND SUBBANDS

A. Independent, uncoupled single bands

The model RTD considered here consists of 10 monolayer
(ml) AlAs barriers with a 20 ml GaAs well. To avoid compli-
cations due to triangular notch states outside the RTD a linear
potential drop is applied35. A degenerate hole Fermi level of
8:4meV is assumed corresponding to a doping of 1018cm�3.

The simplest approach to hole transport available in NEMO
is the independent treatment of the light and heavy hole bands
in a single band tight-binding basis. Within the single band
model the effective masses and bandoffsets can be freely cho-
sen. For the light hole band simulation the following effective
masses and valence band offset are used: mGaAs = 0:071,
mAlAs = 0:15, and �Ev = �0:545eV . For the heavy hole
simulation the corresponding values mGaAs=0:41, mAlAs=
0:48, and �Ev = �0:545eV are used. These masses corre-
spond to values that our sp3s* second nearest neighbor pre-
dicts in the [001] direction (see Table I in Appendix C).

Figure 1 shows the zero bias density of states and trans-
mission coefficients for the independent single band models.
The density of states shows the nodal structure of the cen-
tral RTD resonances. Each of the resonances corresponds to a
peak in the transmission curve. The light hole density of states
(Fig. 1a) and transmission coeffient (Fig. 1b) look similar to
the density of states presented in Figure 2 of reference [ 7].
The heavy hole mass is significantly larger than the light mass
resulting in a smaller energy separation between the confined
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FIG. 1. Independent single band density of states and transmis-
sion coefficients. (a) and (b) light hole. (c) and (d) heavy hole. On
the gray scale dark (light) corresponds to high (low) density of states.
Symmetries of the ground excited hole states are evident and aligned
in energy with the transmission resonances. Heavy hole resonance
are much narrower (resonance widths: 3:3 � 10�6 , 4:9 � 10�5 ,
5:0 � 10�4 , 7:2 � 10�3 , and 2:3 � 10�1meV ) than light hole
resonances (resonances widths: 3:3� 10�2 and 5:9� 10�1 meV ).

states36. The barriers are much more opaque for the heavy
electron than the light electron resulting in much stronger
confinement37. This stronger confinement reveals itself in a
significantly larger intrinsic lifetime of the resonance state, or
equivalently in a much smaller resonance width. Indeed the
NEMO resonance finder26 indicates that the LH ground state
is about four orders of magnitude wider than the HH ground
state as indicated in the caption of Figure 1.

B. Comparison of single band and multiband transmission
coefficients

The RTD heterointerfaces as well as applied and built-in
potentials break the translational symmetry in the growth di-
rection. This symmetry breaking and the spin-orbit interac-
tion couples the light, heavy and split-off bands. To prop-
erly model such coherently coupled bands the multiband tight-
binding sp3s* model is employed.

Figure 2 compares the previously calculated independent
single band transmission coefficients of Fig. 1b) and (d) to a
transmission coefficient based on the second nearest neighbor
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FIG. 2. Density of states (a) and transmission (b) computed in
the sp3s* model. Resonance linewidths are HH1� 5 1:4 � 10�6 ,
4:5 � 10�5 , 1:8 � 10�4 , 1:2 � 10�3 , 2:8 � 10�1 meV , and
LH1 � 4 5:4 � 10�3 , 1:7 � 10�1 , 4:6 � 10�1 , 1:9 � 100 meV ,
and SO1 8:2 � 10�3 meV . (c) Transmission coefficient in the in-
dependent single band model from Fig. 1b) and (d) for the LH and
HH effective mass model, as well as a single band SO band model
with mGaAs = 0:14, EGaAsso = �0:366eV , mAlAs = 0:25, and
EAlAsso=�0:883eV .

tight-binding model. The general features of the multiband
transmission coefficient resemble the sum of the individual
light and heavy hole bands at low energies with E< 0:2 eV .
On closer inspection it becomes clear, however, that the reso-
nances one would associate with heavy hole states do not re-
sult in a unity transmission coefficient. While the light hole
resonance transmission looks close to one on the logarith-
mic scale it does not quite reach unity. Furthermore there are
some transmission zeros evident in the multiband case23;20;18.
These features are all characteristics of the Fano lineshape
which occurs when a bound state is coupled to a continuum38.
In the case of hole transport all the resonances are of the Fano
type. Transmission zeros occur for isolated Fano resonances.
The zeros move off the real axis in conjugate pairs for over-
lapped Fano resonances [ 26]. This explains the lack of trans-
mission zeros for the light hole resonances. Note that unlike
the k�pmodel20 the sp3s* model couples the LH, HH, and SO
bands for k= 0 even for zero bias due to symmetry breaking
and proper inclusion of the spin-orbit interaction.

The density of states in Figure 2a) shows the nodal sym-
metries of the LH, HH, and SO resonances. From the nodal
symmetry one can identify the various LH, HH and SO reso-
nances in the multiband transmission coefficient. Compared
to the single band results, the multiband LH resonances LH2
and LH3 move to lower hole energies. This can be explained
by the strong LH band non-parabolicity that will be discussed
in the next section in more detail. The HH2-4 states move
slightly in the opposite direction which cannot be explained
by band non-parabolicity. In Sections VII B-VII D and Ap-
pendix B we will show that these states are strongly coupled to
the light hole states as visible by strongly enhanced resonance
linewidths. Such strong coupling corresponds to a lighter hole
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FIG. 3. (a) Light hole dispersion surface in the [100] and [010]
plane. (b) Slices through the surface in (a) along kx for three dif-
ferent momenta, kz = 0,kz = 0:04, and kz = 0:08. kz = 0:04,
and kz = 0:08 correspond to the first two quantized states in
the model RTD presented here. Dashed lines indicate a perfectly
parabolic, anisotropic dispersion computed with a light hole mass of
m� = 0:07. Note the large discrepancy between the non-parabolic
bands and the parabolic bands at larger k values. The energy and
curvature of the first excited subband with kz = 0:08 is modeled
completely incorrectly using an anisotropic parabolic dispersion.

mass which causes the resonance energies to go up in energy
more than states based on pure heavy hole effective masses.

Note that the standing wave patterns outside the RTD of the
de-coupled light and heavy holes in Figures 1a) and (c) are
now washed out in Figure 2. Only a weak standing wave
pattern can be observed, indicating strong mixing of heavy
hole and light hole states outside the RTD structure. For a
larger picture of the typical standing wave pattern outside an
RTD we refer the reader to Figure 2 of reference [ 7]. A break
in the standing wave pattern outside the RTD also shows the
on-set of the SO band at about 0.366eV.

C. Light- and Heavy-Hole Anisotropy and their Effects on the
Transverse Subbands

The light- and heavy-hole bands in typical III-V semicon-
ductors are anisotropic. Hole mass measurements are avail-
able39 for a variety of material systems in the [100], [110], and
[111] directions. Table I in Appendix C contains measured39

HH, LH, and SO band masses and their values in our sp3s*
second-nearest neighbor tight-binding models for the case of
GaAs and AlAs. We use the second nearest neighbor model
since it has been shown25;40 that it offers a higher degree
of freedom to independently adjust masses in the [100],[110]
and [111] directions compared to the nearest neighbor tight-
binding model.

We emphasize here that the overall results presented in
this paper such as off-zone center current flow and transverse
momentum dependence are not unique to the second nearest
neighbor model. We have verified that they can be observed in
the nearest neighbor sp3s* model as well. However, the hole
anisotropy is not represented as well in the nearest neighbor
model.
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FIG. 4. (a) Heavy hole dispersion surface in the [100] and [010]
plane. Ridge in the [110] direction is evidence of the heavier mass
in the [110] direction than the [100] direction. (b) Slices through the
surface in (a) along kx for five different momenta, kz=0, kz=0:04,
kz = 0:08, kz = 0:12, and kz = 0:16. kz 6= 0:0 correspond to the
first quantized states in the model RTD presented here. Dashed lines
indicate a perfectly parabolic, anisotropic dispersion computed with
a heavy hole mass of m�=0:41. Note the electron-like compared to
the perfect parabolic behavior.

The introduction of a double barrier heterostructure causes
a quantization of the crystal momentum in one (the growth /
longitudinal) direction. In the transverse direction the plane
wave crystal momentum remains a good quantum number
and the dispersion is described by subbands. In this section
the construction of these subbands including the effects of
the light and heavy hole anisotropy is illustrated. To present
the physical argument for the shape of the dispersion we start
from a bulk band structure that includes the band anisotropy.

Figure 3a) shows a surface plot of the light hole bulk dis-
persion in the [100]/[010] plane computed with our second
nearest neighbor sp3s* model. Figure 3b) shows three slices
taken through the [010] axis plotted along [100] through the
surface shown in (a). If the light hole band were perfectly
parabolic, Figure 3a), would show an anisotropic paraboloid,
and slices along this paraboloid would be perfect parabolas as
indicated by the dashed lines in Figure 3b).

The heterostructure growth quantizes states along the
growth direction. Assume that E1 = E(k1 � �=� � 0:04)
is the ground state energy41 of the man-made resonantor of
length �. E2 = E(k2 = 2k1 � 0:08) and E3 = E(k3 =
3k1 � 0:12) are the first and second excited state energy, re-
spectively. E1 and E2 are depicted in Figure 3b) by heavy
lines. The same figure shows perfect parabolic dispersions
for E1 and E2 in dashed lines. The anisotropy of the light
hole band flattens out the transverse subband significantly, in-
creasing the effective mass in the transverse direction. Move-
ment down in energy of the LH2 and LH3 resonances was
already seen in the comparison of transmission coefficients in
Figure 2b) and (c).

The transverse subband dispersion becomes more complex
for the heavy hole case. Figure 4a) shows a the heavy hole
dispersion in the [100]/[010] plane. The heavier mass in the
[110] direction compared to the [100] direction clearly results
in a ridge-like feature on the 2-D surface. Figure 4b) shows
four slices taken through the [010] axis plotted along [100]
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FIG. 5. (a) Overlayed de-coupled light hole (long dashed lines)
and heavy hole (short dashed lines) transverse dispersions from Fig-
ures 3b) and 4b), respectively. (b) Same as (a) combined with trans-
verse dispersion computed in the sp3s* coupled band model in an
open RTD system with 10 monolayer AlAs barriers and 20 mono-
layer GaAs quantum well (solid line).

through the surface shown in (a). Again the dispersion is
quantized by k1 � �=�� 0:04 as the ground state energy41

of the man-made resonantor of length �. k2=2k1, k3=3k1,
and k4 = 4k1 are the first, second, and third excited state re-
spectively. In the case of heavy holes the anisotropy of the
bands produces some unintuitive results: The excited heavy
hole states move up in energy rather than down in energy as
the transverse momentum is increased12;42. For comparison
the dashed lines in the insert indicate a perfectly parabolic
dispersion with the hole mass of m� = 0:41. The electron-
like behavior of the excited state subbands is clearly evident.

The next complication in the transverse subband disper-
sion is due to the coupling of the LH and HH bands due to
the translatonal symmetry breaking. The transverse disper-
sion is computed for a hole GaAs/AlAs RTD consistent of 10
monolayer barriers and a twenty monolayer well. Figure 5
shows the plots of Figure 3b) and 4b) overlayed compared
to the RTD transverse subband dispersion. The coupling of
the bands results in the mixing of LH and HH states and in
anticrossings of the transverse subbands. This transverse sub-
band dispersion shows a rich structure that is anything but
parabolic. The question now arises to the effects of these
non-parabolic subbands on the electron transport through the
model RTD, which is the subject of the rest of this paper.

Note that the states in Figure 2b) are labeled in a sequence
of HH1, LH1, HH2, HH3, LH2 according to their resonance
linewidth and nodal feature size, while Figure 5b reverses the
order of LH1 and HH2 according to transverse momentum
behavior. From the transverse dispersion in Figure 5b it is
clear that there is already an anticrossing of HH2 and LH1 at
zero transverse momentum and these states are strongly inter-
acting. From now on we will use the labeling in Figure 5b
according to the transverse momentum behavior and defer a
more detailed detailed discussion to Appendix B.

D. Transverse Momentum Dependent Transmission Coefficients

Previous sections discussed the coupled heavy hole and
light hole transmission coefficient for zero transverse momen-
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tum (Section IV B) and the non-trivial heavy and light hole
transverse subband dispersion (Section IV C). This section
combines these two aspects and demonstrates the strong mo-
mentum dependence of the transmission coefficients24. Fig-
ure 6 demonstrates this strong dependence by comparison to
an electron RTD.

The electron RTD considered in this case is identical to the
previously considered hole RTD except that the hole dopant
is replaced by electron dopant and the AlAs barriers are
replaced43 by Al0:4Ga0:6As. Figure 6a) shows the famil-
iar transmission coefficient through an electron RTD at zero
transverse momentum. Figure 6b) shows the expected trans-
verse dispersion for the ground and first excited state in a
GaAs/AlGaAs RTD. Some non-parabolicity is evident in the
first excited state. Figure 6c) shows the transmission coeffi-
cient for a transverse momentum of k=0:039. This transmis-
sion coefficient appears qualitatively to be just energy shifted
from the one in Figure 6a) disregarding non-parabolicity in the
second state. That is exactly the assumption that enters into
the derivation of the Tsu-Esaki formula (Eq. 6). Note, how-
ever, that the transmission coefficient does not reach unity. We
also refer bak to our discussion on the validity of the approxi-
mation in Section III.

The lower three panels in Figure 6 show the equivalent
transmission coefficients and subband dispersion for the hole
RTD. Unlike the electron case the transmission coefficient
shown in Figure 6f) is not merely an energy shifted version
of the zero transverse momentum case; in fact it has little re-
semblance at all. The energies and widths of the individual
resonances are modified significantly. The resonance energies
in Figure 6f) correspont to the of the dispersion in Figure 6e)
with the dashed vertical line at k=0:039. The spin splitting 44

in the dispersion of Figure 6e) results in double peaks of the
tranmission coefficient. The strong transverse momentum de-
pendence on the transmission coefficient shown in Figure 6f)
will result in an interesting dependence of the current flow
distribution in momentum and energy as discussed in the next
section. A comparison between the momentum dependence
of the electron and hole current flow based on their different
dispersions can also be found in reference [ 45].

We have also examined the density of states and the struc-
ture of the eigenstates at k=0:039 corresponding to Figure 6f)
and found that the nodal symmetries that are visible in the den-
sity of states shown in Figure 2 are completely broken. We
expect this break in the symmetry to have significant effects
on the strength of optical matrix elements and leave further
discussion to a later publication.

V. CURRENT DENSITIES

The previous section IV D showed a rich structure in the
transverse hole dispersion and transmission coefficients. In
this section the transmission coefficient T (E; k) is converted
into a current density J(E; k) and interesting physical fea-
tures due to this structure are discussed in the context of: 1)
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FIG. 6. (a),(b), and (c) refer to the GaAs/AlGaAs electron RTD
described in the text (d), (e), and (f) refer to the GaAs/AlAs
hole RTD. No voltage is applied. (a) Transmission coefficient
T (E; k = 0). (b) Transverse electron subband. A small
non-parabolicity is visible for the second state compared to the
ground state. (c) Transmission coefficient T (E; k= 0:039). Curve
is qualitatively identical to (a) except for the shift in energy. (d), (e)
and (f) are the equivalents to (a), (b), and (c) for the hole RTD. The
transmission coefficient in (f) is clearly not just an energy shifted
version of the transmission coefficient of (d). Spectral features have
significantly shifted.

features in the total energy E integration, 2) features in the
momentum dependent current density J(k), and finally 3) fea-
tures in the current voltage characteristic.

A. Transverse Momentum Dependent Current Carrying
Channels

Figure 7 demonstrates how the momentum dependence dis-
tributes the current flow through the hole RTD over vari-
ous different energies in the case of a carrier temperature of
300K. Panels (a) and (c) of Figure 7 show the current density
J(E; k)= T (E; k)(fL(E) � fR(E)) for two different trans-
verse momenta at a small applied voltage of 0.011V. Except
for a small modification due the applied bias and the exponen-
tial energy modulation by the Fermi function (see the dashed
lines indicating the Fermi functions as 4.2K, 77K, and 300K)
the current densities shown in Figure 7a,c) resemble the trans-
mission coeffients in Figure 6d,f) well.

Figure 7b,d) shows the running integrals ( ~J(E; k) =R
E

�1

dE0J(E0; k)) as a function of energy E corresponding
to Figure 7a,c). The running integral provides a simple way to
analyze the importance of the various different energy chan-
nels through the structure. Channels / resonances that carry
significant current will contribute significantly to the running
integral. While the zero transverse momentum case shows
only one significant energy channel (single step function) the
non-zero transverse momentum case shows three different sig-
nificant channels. Figure 7b,d) shows that the spectrum of
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energy as indicated by the step. (c) Same as (a) at a transverse mo-
mentum k=0:04. Note that the curve is not an energy shifted replica
of (a) but has significantly different features. (d) Running integral of
(c). Significant current flow occurs at three different energies as in-
dicated by the distinct three steps.

transverse hole channels is changed qualitatively and that the
energy and number of hole transport channels is modified sig-
nificantly by the transverse momentum change. For electron
transport one would only observe almost identical step func-
tions that are shifted in energy according to the transverse dis-
persion. The running integral shown in Figure 7d) is clearly
not a shifted version of the integral shown in Figure 7b). The
Tsu-Esaki approximation to the transverse momentum inte-
gration (Eq. 6) is therefore expected to break down com-
pletely.

B. Hole Transport Current Voltage Characteristics

With the discussions in the previous sections is fairly clear
that the current density J(k) can be expected tohave signif-
icant features in it. Figure 8 represents two of the central
results of this paper: 1) The current density J(k) can be
sharply spiked outside the zone center � at k 6= 0 indicating
that more holes traverse the structure at an angle than straight
through, similar to an indirect bandgap material, and 2) to cap-
ture this physics one must perform an explicit integration over
the transverse momentum.

Figure 8a) shows two current voltage characteristics com-
puted at 4.2 K with (solid line, Eq. 2) and without (dashed
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FIG. 8. (a) Current voltage characteristic computed in the sp3s*
model using numerical (solid line) and analytical (dashed line) trans-
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integrand J(k) as a function of appled bias and transverse momen-
tum. The dashed line of (a) corresponds to a cut (except for scaling
by the 2-D density of states �2D) through (b) along the k=0 line. (c)
Cut of J(k) through (b) at a bias of 0.2V on a logarithmic and linear
scale. (d) Same as (a) on linear scale.

line, Eq. 6) explicit integration over the transverse momentum
on a logarithmic scale. The full integration with the trans-
verse momentum shows a significantly enhanced current flow
and current features that do not even show up in the analytic
transverse integration. The origin of these additional chan-
nels is depicted in the color contour plot of the current density
J(k) of Eq. 4 as a function of k and applied voltage in Fig-
ure 8b). Sharply defined streaks of current flow are visible in
the momentum space. The current streaks resemble the trans-
verse subband dispersion if the voltage axis is converted into
an energy axis (with a factor of 0.5, due to the linear potential
drop).

The key information to take from Figure 8 is to realize that
the current density J(k) has maxima that are not at k = 0.
This is shown explicitly by a cut through the contour plot at a
constant voltage of 0.2V in Figure 8c). The current density is
sharply peaked at a transverse momentum of about k=0:016
as visible on a linear and logarithmic scale. These sharp peaks
are completely ignored in the analytical Tsu-Esaki integration.
In fact the dashed line in Figure 8a) can be considered a cut
through the contour of Figure 8b) at a constant transverse mo-
mentum k= 0. Figure 8d) emphasizes the importance of the
full band integration one more time by showing the I-V char-
acteristic from Figure 8a) on a linear scale.
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VI. AN ANALYTIC EXPRESSION FOR THE CURRENT
DENSITY J(K)

A. Derivation

While the numerical simulation results appear acceptable,
they do not provide good physical insight into the processes
that generate the off zone center current flow. To better under-
stand the behavior of the current density J(k) as a function
of the transverse momentum k an analytic expression is de-
rived. The formula is derived by starting from Eq. 2 assuming
a Lorentzian shaped transmission coefficient of the form

T (E; k) =
1

1 +
�
E�Er(k)

�(k)

�2 ; (7)

where Er(k),the momentum dependent resonance energy, is
assumed to be independent of the transverse momentum di-
rection, �, for simplicity. Also for simplicity we assume zero
temperature and that the bias is high enough to neglect back
injection from the collector (fR = 0). In the case of electron
flow above the momentum dependent conduction band edge
Ec(k) one can the write:

J(k) / u(EF �Ec(k))

Z EF

Ec(k)

dE

1 +
�
E�Er(k)

�(k)

�2 (8)

= u(EF �Ec(k)) �(k) (9)�
atan

Er(k)� Ec(k)

�(k)
� atan

Er(k) �EF

�(k)

�

where u is the heavyside function. Reversing the energy
scales results in a similar expression for J(k) for holes.

VII. J(K) IN IDENTICAL, PARABOLIC BANDS

To gain more analytical insight we now assume a perfect
parabolic dispersion (Er(k) = E0 +

�h2k2

2m�
and Ec =

�h2k2

2m�
)

and an momentum independent tunneling rate (�(k) = �0).
Equation 9 can then be simplified to:

J(k) / u(EF �Ec(k)) �0 (10) 
atan

E0

�0
� atan

E0 +
�h2k2

2m�
�EF

�0

!

Under the assumptions leading to Eq. 10 one can now show
that J(k) is monotonically decreasing as a function of trans-
verse momentum for Ec<EF :

dJ(k)

dk
/ �

k

1 +
�
E�Er(k)

�(k)

�2 < 0 (11)

We therefore confirm the intuitive result that the current den-
sity J(k) is peaked at zero transverse momentum k and de-
creases monotonically with k. Note that this conclusion is
only true for the restrictions of perfect and identical parabolic
dispersion in the resonance energy and the conduction band
edge (the lower bound for carrier injection).

A. Zone Center Current Flow for Electrons

To examine the derived analytical Eqs. 9 and 10 for J(k)
and to validate our numerical NEMO machinery for J(k) we
now compare the two for the electron RTD discussed previ-
ously in Section IV D. Figures 9a,b) show the current voltage
characteristic46 on a linear and logarithmic scale, respectively,
computed with (solid line) and without (dashed line) explicit
transverse momentum integration at a temperature of 4.2K.
The analytical Tsu-Esaki integration and the numerical inte-
gration give virtually the same result with an increasing devi-
ation for increasing voltages. This can be expected since the
non-parabolicity overall is weak but increasing at higher en-
ergies as indicated in Figure 6b). Again we refer the reader
to the discussion of the validity of the Tsu-Esaki formula in
Section III. The agreement between the Tsu-Esaki and full
momentum integration in this case is purely due to the un-
physical flat band in the emitter which produces 3-D to 2-D
electron tunneling.

Figure 9c) shows the transverse subband dispersion of the
RTD ground state at the first resonance voltage of 0.1V. The
numerical dispersion (solid line) can be fit to an effective mass
of 0.0823 (empty circles) which is slightly heavier than the
bulk effective mass for this bandstructure model of 0.0678
(dashed line). This slightly heavier mass is another indica-
tion of the band non-parabolicity mentioned above. The inset
in Figure 9c) shows the relatively weak dependence (20%) of
the ground state linewidth as a function of transverse momen-
tum. The dashed horizontal line indicates the Fermi level in
the emitter. This horizontal line can be thought of as the fill
level of the subbands. The subbands are full of electrons be-
low this level and empty above. Figure 9d) compares the
numerical curve of J(k) obtained with NEMO at a bias of
0.1V to two curves computed with Eq. 9 (long dashed line,
� and Er from Figure 9c)) and Eq. 10 (short dashed line,
m� = 0:0678, E0 � 22meV , and �0 � 0:57meV ). The in-
set shows the same curves on a logarithmic scale. The three
curves are indeed monotonically decreasing (see Section VII)
with the peak at k= 0. All three show a particular sharp cut-
off that can be associated with the rise of the resonance energy
above the Fermi level as indicated by the vertical dashed lines
connecting Figures 9c) and (d). It can be shown numerically45

that for all bias points that J(k) is monotonically decreasing.
The qualitative and quantitative agreement of the zero tem-

perature analytic expressions of Eqs. 9 and 10 with the purely
numerical result at 4.2K confirms the validity of the analytic
equations and the numerical machinery in NEMO. Deviations
between the analytical and numerical results are due to the
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FIG. 9. (a) Current voltage characteristic for a electron
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show numerical and analytical integration of the transverse momen-
tum, respectively. (b) Same as (a) on a logarithmic scale. (c) Trans-
verse subbanddispersion at the peak current voltage of 0.1V obtained
numerically (solid line), fit with effective mass 0.0823 (open circles),
and bulk effective mass 0.0678. Inset shows weak dependence of the
resonance line width on the transverse momentum. (d) Numerical
J(k) compared to analytical Eq. 9 (long dash, with numerical E r

and � from (c)) and Eq. 10 (short dash, with analytical Er based on
m� = 0:0678). Current cut-off (indicated by vertical lines connect-
ing (c) and (d) corresponds to the crossing of the resonance energies
above the Fermi level in the emitter (horizontal dashed line in (c)).
Inset shows the same curves on a logarithmic scale.

zero temperature assumption of the analytical formulas. The
following sections will utilize Eq. 9 to analyze spectral fea-
tures in J(k) for hole transport.

B. Off-Zone Center Current Flow due to Non-monotonic
Dispersion

The discussion of J(k) for electron transport revealed the
importance of the crossing of the dispersion curve with the
Fermi level in the emitter for the cut-off of the current. With
the non-monotonic hole dispersions shown in Figure 5 one
can imagine that a resonance that is outside the Fermi sea at
zero transverse momentum dips back into it and then leaves
the Fermi sea again as the transverse momentum is increased.
This basic mechanism is the theme of Figure 10 where the
numerical J(k) is compared to the analytical expression in
Eq. 10.

Figure 10c) provides an overview of the energy scales of
the subbands that might be involved in hole transport at a bias
of 0.113V (compare to Fig. 8). The emitter valence band edge
is set to be the zero energy origin. The emitter hole states
are occupied in a narrow energy range below the valence band
edge as indicated by the shaded area. The HH1 subband is
pulled above the valence band edge and cannot conduct holes.
The LH1 subband is too far below the Fermi sea to conduct.
Only the HH2 subband is within reach of the shaded Fermi
sea.

Figure 10a) is an expanded view of Figure 10c) in the en-
ergy range around the Fermi sea. It shows the HH2 " and
HH2 # dispersion44 in dashed lines. The solid lines with the
circles indicate the HH and LH bulk dispersions of the emit-
ter. The horizontal line indicates the hole Fermi level in the
emitter.

Figure 10b) compares the numerically obtained J(k) (thick
solid line) to three components HH2 ", HH2 #, and the sim-
ple sum26;47 HH2 " +HH2 # computed with Eq. 9 using the
dispersion information about EF , EHH emitter, and � in Fig-
ure 10a,d)48. The qualitatively excellent agreement between
the numerical J(k) and the HH2 " +HH2 # analytical result
is quite striking49.

At zero transverse momentum both states HH2 " and
HH2 # are below the Fermi sea in the emitter. Only the
long Lorentzian tails of the resonances conduct a current.
The sharp turn-on at k � 0:016 can be associated with the
HH2 " touching back into the Fermi sea due to the non-
monotonic dispersion. The current is dominantly carried by
this channel44. At a transverse momentum of k � 0:0235
the HH2 " dispersion crosses the bulk (3-D) HH in the emit-
ter. Beyond that crossing point no energy and momentum
conserving hole 3-D to 2-D transitions can be found and the
HH2 " channel turns off. Only the HH2 # is left to conduct
through its Lorentzian tail. This conduction channel is finally
shut off as the bulk (3-D) HH emitter dispersion is below the
Fermi energy and cannot supply any more carriers at a trans-
verse momentum of about k�0:027.

Figure 10d) shows the momentum dependence of the reso-
nance linewidths� of HH2 that is needed for the evaluation of
Eq. 9. The HH1 " shows an interesting large (three order of
magnitude) dependence of the resonance linewidth. A more
detailed discussion of the resonance linewidth dependence is
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FIG. 10. (a) Transverse dispersion of theHH2 "; # states (dashed
lines) at a bias of 0.113V. Solid lines are the 3-D HH and LH disper-
sions in the emitter filled with holes to the Fermi level (light gray
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Sharp J(k) turn-on at k � 0:016 corresponds to HH2 up spin touch-
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to the spin up HH2 state crossing the emitter subband. The current
is carried completely by HH2 #. This current contribution turns off
as the bulk emitter dispersion crosses the Fermi sea. (c) Overview
of the transverse hole dispersion under a bias of 0.113V. Gray area
indicates the occupied hole states in the emitter. (d) Dependence of
the resonance linewidths of HH2 states as a function of transverse
momentum.

deferred to Appendix B.
Figure 10a) shows the LH emitter dispersion for reference.

If Eq. 9 would be used with the LH emitter dispersion instead
of the HH dispersion for Ec one could not achieve the agree-
ment between the analytic and the numerical J(k) as shown in
Figure 10b). J(k) would turn off at k�0:012 at the crossing

of the LH emitter subband with the Fermi level. The current
flow at a bias of 0.113 is completely due to carriers that are
injected from the heavy hole states in the emitter.

Looking at Figure 10 as a whole we can clearly see how
the non-monotonic behavior of the hole dispersion can cre-
ate current features that are sharply spiked in the transverse
momentum dependence. The following two sections will de-
scribe two other mechanisms that can generate similar spikes
in J(k).

C. Off Zone-Center Current Flow due different Emitter and
Quantum Well Effective Masses

The previous section VII B discussed how a sharply spiked
current density J(k) at k > 0 can be generated by the non-
monotonic hole dispersion. The current turns on as the quan-
tum well dispersion dips back into the Fermi sea. A cur-
rent turn-off was observed when the well dispersion crossed
the emitter dispersion. Quantum well and emitter dispersion
crossings can occur even for simpler, almost parabolic, disper-
sions. In particular this can occur if the effective mass in the
quantum well is significantly smaller than in the emitter. In
Figure 11 it is shown how monotonic, however, differently
sloped dispersions can result in similarly spiked J(k) cur-
rent turn-ons and turn-offs. Similar to Figure 10 the shape
of the current density J(k) is dominated by the crossings of
the quantum well dispersions and the emitter dispersion with
each other an the Fermi level in the emitter.

At a bias of 0.048V the main current contribution is due to
tunneling through the HH1 states as indicated in Figure 11.
The current through HH2 states must be included to explain
the background current density of J(k) that is not due to the
HH1 states. The dramatically different resonance widths of
the HH1 and HH2 states are shown in Figure 11d. A more
detailed discussion of the dependence of the resonance widths
on transverse momentum and bias is deferred to Appendix B.
The four analytic current contributions are simply added up
assuming independent Lorentzian lineshapes26;47. The agree-
ment between the numerically and analytically obtained J(k)
in their shape over several orders of magnitude is astonish-
ing, considering the rather crude assumptions of Lorentzian
lineshapes, independent channels, and zero temperature in the
analytic expressions49.

Similar to the case at 0.113V in the previous section, we
find at the bias of 0.048V again that the current flowing
through the structure is dominated by the HH emitter injec-
tion.

The phenomenon of crossing quantum well and emitter dis-
persions is not limited to hole transport, but it is indeed quite
common for high performance InP-based resonant tunneling
diodes50 where the well might contain InAs, while the emitter
is typically InGaAs with a larger effective mass51;52. We have
seen this effect of non-zone center current flow in direct band
gap electron devices in such InGaAs/AlAs/InAs high perfor-
mance RTD systems.
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D. Off Zone-Center Current Flow due Resonance Linewidth
Modulations

The previous two sections VII B and VII C explained how
crossings between emitter dispersion, quantum well disper-
sion, and Emitter Fermi level can lead to current flow that is
dominant (sharply peaked) off the zone center in a narrow mo-
mentum space. This section will demonstrate how the strong
dependence of the resonance linewidth can induce similar off
zone center current flow.

The insert in Figure 12c) shows the dispersion of the low-
est 8 states at a bias of 0.168V. The shaded area indicates the
width of the Fermi sea in the emitter from which holes can be
injected. Only the LH1 states are in the energy range that can
provide significant conductance throught the structure. Fig-

ure 12a) shows the LH1, HH emitter, and LH emitter disper-
sions as well as the emitter Fermi level. Given this dispersion
one can expect current flow through the LH1 state by injec-
tion from either the LH or HH states in the emitter. Current
flow is expected to cease as a function of transverse momen-
tum as the quantum well and emitter dispersions are leaving
the Fermi sea, similar to the electronic case presented in Fig-
ure 9. Therefore a monotonically decreasing current density
similar to Figure 9d) could be expected. However, the res-
onance widths, �, of the LH1 states show (see Fig. 12c) an
increase by over two orders of magnitude in the transverse
momentum range of interest. This increase in � leads to a
dramatic increase in the current density J(k) as indicated in
Figure 12b).

Unlike the previous two sections where only the carrier in-
jection from the HH emitter dispersion needed to be consid-
ered, carrier injection from both, the HH and LH dispersion
in the emitter is considered in this case (full and open circles,
respectively). The emitter HH contribution is weighed by an
arbitrary factor of 0.2 compared to the emitter LH contribu-
tion to best match the lower lying shoulder at k > 0:02. At a
bias of 0.168V most of the current is due to injection from the
LH emitter subband. Injection from the HH emitter subband
only provides a background that is visible on the logarithmic
scale of Figure 12b).

Note that the turn-on in J(k) appears smoother on a lin-
ear scale (inset of Figure 12b) compared to the previous cases
(see inset in Fig. 10b and Fig. 11c). This is due to fact that
the turn-on is generated by the smooth increase in the reso-
nance linewidth � and not by a crossing of the various dis-
persions with the Fermi level. Also in the case the agreement
between the numerical and the semi-analytical J(k) is quite
remarkable49.

E. Current Flow Dominated by HH Injection

The previous three sections showed for three different bias
points that the current flow through HH/LH states in the quan-
tum well is dominated by injection from HH/LH states in the
emitter, repectively. The purpose of this section is to show that
this same-state-injection dominance is in general not true, but
that the current is mostly dominated by HH injection from the
emitter over a large voltage range.

Figure 13a) compares current-voltage characteristics cal-
culated completely numerically with NEMO and analytically
from Eq. 9. To obtain an I-V accross a voltage range using
Eq. 9 one must have a complete transverse dispersion includ-
ing the resonance energy as well as the resonance linewidth
as a function of bias. The dispersion may change beyond the
simple shift in energy due to the applied bias due to the chang-
ing coupling to the leads as the emitter/collector barrier be-
comes more/less opaque with increasing bias. This change in
coupling will mostly affect the resonance widths (For a more
detailed discussion of the bias dependence of the dispersion
see Appendix A and B). Instead of using NEMO to compute
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FIG. 12. (a) LH1 dispersion at a bias of 0.168V. Emitter HH and
LH dispersion is indicated by the filled and open circles, respectively.
The filling of the emitter dispersions up to the Fermi level is indicated
by the light gray areas. Crossings of the dispersions the Fermi level
will result in turn-off features of J(k) in (b) as indicated by vertical
lines. Holes that which can tunnel through the device are indicated
by the dark gray area. (b) Numerical J(k) (thick solid line) com-
pared to 4 analytical contributions computed from (a) and (c) using
Eq. 9. The HH emitter injection is weighed by a scaling factor of
0.2. The current turn-on is associated with the strong modulation of
thre resonance width as a function of momentum shown in (c). The
inset in (b) is the same as (b) on a linear scale. The inset in (c) is an
overview of the quantum well dispersion at this bias. The gray shade
indicates the Fermi sea.

the dispersion at every bias point we have used only two dis-
persions at a bias of 0V and 0.2V and interpolated from these
dispersions for all the bias points in the voltage range of 0-
0.3V and applied the simple shift in energy of half the applied
voltage in electron volts due to our simple linear drop poten-
tial.

In the application of Eq. 9 we have included the lowest 8
resonances and have treated them independently of each other
assuming a Lorentzian lineshape as we have done in the previ-
ous three sections. All the resonances are assumed to couple
equally53 to the light hole and the heavy hole emitter states.

The complete analytic and numerical I-V characteristics are
normalized to a peak value of one. The good agreement be-
tween full numerical solution and the analytic solution based
on Eq. 9 is astonishing.

The thin dashed line of Figure 13a shows the analytic cur-
rent contribution due to emitter light hole band injection only.
Considering the light hole injection only underpredicts the
current by several orders of magnitude. We therefore conclude
that most of the current is carried due to heavy hole emitter
injection. This is somewhat of a surprise since the barriers
are much more opaque for heavy holes than light holes. This
dominance of the heavy hole injection underlines the impor-
tance of the band mixing due to the heaterostructure interface.

Figures 13b,c show the dependence of the current density
J(k) versus applied voltage and transverse momentum forHH
and LH injection computed from Eq. 9. The HH/LH injection
J(k) cut off at a transverse momentum of 0.012/0.027, repec-
tively, corresponding to the crossing of the LH/HH emitter
with the Fermi level (see for example Figure 12).

The solid lines in these plots show the first k-moment
(kJ =

R 1
0
kJdk=

R 1
0
Jdk) of the current density in the trans-

verse direction. Off-zone center current flow dominates wher-
ever the first moment exactly follows the center of the dis-
tribution (red streaks). The dominant current flow is at zone
center when the first moment is independent of the voltage.

Figure 13d compares the two individual first moments of
J(k) from Figures 13b,c to each other and to the first moment
of the total current density. Again the dominance of the HH
injection over the LH injection is displayed dramatically. Also
this Figure shows the extent of the voltage region in which the
current flow is dominanted by off zone center processes.

This section presents an I-V calculation that is purely based
on the analytic Eq. 9 and two numerical dispersions at biases
of 0V and 0.2V. This procedure speeds up the time needed
to compute a single I-V simulation by at least three orders of
magnitude. This speed-up enables us to compute multiple I-V
characteristics for various parameters that do not change the
central resonance dispersion.

VIII. FERMI LEVEL DEPENDENCE

Sections VII B–VII E show that the crossing of the various
central resonance and emitter subband dispersions with the
Fermi level in the emitter produce sharp turn-ons and turn-
offs in the current density J(k) and ultimately in the fully in-
tegrated current. All the previous discussions assume a fixed
Fermi level of 8:4meV . This section examines the depen-
dence of the overall current on the Fermi level in the emitter.
The current is computed using the same semi-analytical ap-
proach as presented in the previous Section VII E. Figure 14a
shows two I-V characteristics computed for Fermi energies of
5m eV and 20 meV . The increase of the Fermi level clearly
raises the overall current by more than one order of magni-
tude. It also broadens out the individual current peaks signif-
icantly. That effect can be associated with the much larger
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k-space in which transport through non-trivial subbands can
take place. This trend is strikingly similar to the two I-V char-
acteristics shown in Figure 8a which discussed the proper in-
tegration over the k-space. Again we can show the Tsu-Esaki
approximation to be limited to a small Fermi level. The over-
all increase in the current with the Fermi level increase is un-
derstandable in the context of an increased occupied k-space
in the emitter.

Figure 14b shows the spreading out and increased am-
plitude of the current peaks in a contour plot as a func-
tion of Fermi energy. The current turn-ons move to smaller
voltages with increasing Fermi levels as expected, since the
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FIG. 14. (a) I-V characteristic for two different emitter Fermi lev-
els (5meV and 20meV). (b) logarithm of I-V characteristics as a func-
tion of Fermi energy.

resonances touch the Fermi sea at smaller voltages. How-
ever, the different states show two different turn-off depen-
dencies with the Fermi level. The turn-off of the second
and fourth current peak (HH2 and HH3) are independent on
the Fermi level while the turn-offs of the first/third current
peak HH1/LH1 show a weak/strong dependence, respectively.
These HH1/LH1 turn-offs move to higher voltages. This be-
havior can be understood in terms of turn-ons and turn-offs of
J(k).

Figure 11a shows that the J(k) turn-off of the HH1 state
(first current peak in Figure 14b) is determined by the cross-
ing of the resonance subband with the Fermi energy. As the
Fermi energy is increased the turn-off moves to a larger thans-
verse momentum which in turn increases the area under the
curve J(k) (Figure 11b). The J(k) turn-on is determined by
the crossing of the central resonance with the HH emitter dis-
persion where the central effective mass is smaller than the
emitter effective mass. Increasing the Fermi level increases
the voltage range where such a turn-on can happen before the
dispersions have crossed the Fermi level. The effect is larger
for the LH1 state than the HH1 state since the difference to
the HH emitter mass is more significant.

The turn-offs of peak 2 and 4 in Figure 14 are independent
of the Fermi level since these peaks correspond to HH2 and
HH4 which are characterized by an almost flat transverse dis-
persion (see Figure 5b). Their condition for current turn-on in
J(k) is not influenced by the Fermi level.
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IX. CURRENT VOLTAGE TEMPERATURE DEPENDENCE

All of the current voltage characteristics discussed in the
previous sections were computed at a temperature of 4.2K. As
the hole temperature is increased for a given Fermi level, more
holes are thermally excited above the Fermi level in total en-
ergy E as well as transverse momentum k. The k � 0:027
cutoff of J(k) at a temperature of 4.2K (see Figure 8), is
pushed to about k � 0:08 at a temperature of 300K. This in-
creased range of carrier injection in the transverse momen-
tum space increases the number of channels that can propa-
gate holes through the structure significantly. This increased
number of transmission channels is expected to wipe out most
of the current voltage features that are visible at 4.2K. Fig-
ure 15 shows a comparison of three different current voltage
characteristics computed at 4.2K, 77K, and 300K. Indeed it
is found that most of the sharp current features vanish. How-
ever this does not take away from the conclusion that most of
the current is transported away from the zone center. Indeed
we verified (not shown here) in a plot similar to Figure 8b)
that the current J(k) peaks outside the zone center. This point
can also be made by plotting the data on a logarithmic scale54

similar to Figure 8a).

X. TRANSVERSE MOMENTUM ANGLE DEPENDENCE

All of the previous discussions have considered the depen-
dence of the carrier transport on the magnitude of the trans-
verse momentum ~k, however the dependence on the angle �

has been omitted. In all the previous discussions the trans-
verse momentum was considered only in the [100] direction
corresponding to �=0. Due to the rotational symmetry of the
GaAs (zincblende) lattice one can expect a rotational symme-
try every 90 degrees55 with a mirror plane symmetry along
[110]. Figure 16 shows the transverse hole dispersion for
these two extremal momentum directions �= 0 and �= 45.
The subband dispersion appears to be only weakly dependent
on the angle �.
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FIG. 16. Hole dispersion for �=0 (solid lines) and �=45 (sym-
bols).

Figure 17 examines the current voltage characteristic de-
pendence on the transverse momentum angle �. Figure 17a)
shows three different current voltage characteristics: two
computed at a fixed � = 0 and � = 45 using Eq. 2 and one
based on an explicit integration over the � coordinate using
Eq. 1. Only a small dependence on the angle � can be found
in the current peak that can be associated with the LH1 reso-
nance. Figure 17b) verifies this weak dependence on the angle
� in a contour plot over the angle range of [0:::45]with 9 steps
of size of 5.625. This is the raw data that lead to the integra-
tion over the angle � in Figure 17a).

From Figures 16 and 17 one can conclude that the assump-
tion of angular symmetry that leads from Eq. 1 to Eq. 2 is
well satisfied in the model system considered here. Only a
relatively weak dependence on the angle � is found. Only the
third current peak (LH1) shows a weak dependence on the in-
gle of incidence. A stronger dependence could be expected in
cases where more holes are injected at larger transverse mo-
mentum magnitude, since that is where the dispersion differs
more significantly. We checked this hypothesis by comparing
current voltage characteristics computed at various angles at
a temperature of 300K. However, only a small dependence on
the transverse momentum angle was found as well (not shown
in a graph here).

XI. COMPARISON AGAINST EXPERIMENT

Hole resonant tunneling diodes have been investigated ex-
perimentally in some detail56. Negative differential resistance
and effects due to charge accumulation in the central RTD
and emitter region have been observed in a variety of different
structures. Our previous research on electron transport RTD’s
has shown4–7 that the proper modeling of the free charges
inside and outside the central RTD are essential in the quan-
titative prediction of the current-voltage characteristics. To
simplify the comparison against experimental data we pick an
experimental data set that is weakly dependent on the charge
accumulation inside the central RTD. Hayden56 et al. studied
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the effect of charge accumulation and intrinsic bi-stability in
an asymmetric RTD. Their structure is described as ”a 4.2-
nm GaAs quantum well formed between two AlAs tunnel
barriers of thickness 4.5 and 5.7 nm. Undoped spacer lay-
ers of thickness 5.1 nm separate the two tunnel barriers from
Be-doped contact layers in which the doping is graded from
5 � 1017cm�3 to 2 � 1018cm�3 over a distance of 200nm.”
The mesa size is assumed57 to be 100�m. Figure 18 shows
the forward bias data taken from Figure 2 of reference [ 56]
in a solid line on two different voltage scales. In that bias di-
rection no charge accumulation is evident in the central RTD
since the escape rates through the collector barrier (4.5nm) is
larger than the escape rate through the emitter barrier (5.7nm).
NEMO allows the user to choose a variety of different electro-
static potential models. The Thomas-Fermi model assumes a
semi-classical free charge distribution in the leads and a zero
free charge in the non-equilibrium region. This model leads
to simulation results4;7 that provide reasonable insight into the
device performance as long as the charge accumulation in the
RTD is negligible. Effects due to the quantization in the emit-
ter notch56;4 are neglected in the free charge calculation. The
Hartree charge self-consistent potential model was not used in
the simulations shown here to reduce the required CPU time.

We entered the structure as described by Hayden56;57 into
NEMO, chose a optical relaxation rate of 24meV in the con-
tact regions4, and used the same second nearest neighbor
sp3s* model as in the rest of this paper. The resulting current-
voltage characteristic is compared to the experimental data in
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FIG. 18. (a) Current Voltage characteristic (solid line) for an
asymmetric hole RTD from reference [ 56] compared to our simu-
lation result scaled down by a factor of 20.0 (dashed line). (b) Same
as (a) in a larger voltage range.

Figure 18. The simulation results have to be scaled down by
a factor of 20.0 to be compared to the experimental data on
a linear scale. While such a deviation might sound large we
point out here that such a deviation is not completely unex-
pected. We have verified with NEMO that variations of 2-3
monolayers in the barrier thickness and variations in the dop-
ing profile detail can result can result in such current density
variations of factors of 20. We feel that such deviations can
only be eliminated in a controlled testmatrix 6 of experimental
structures where experimental trends can be analyzed in more
detail. Such a controlled comparison between experiment and
theory is not the point of this paper here. One question raised
by Hayden56 was the lack of a HH1 resonance in the I-V spec-
trum. Our simulations suggest that the HH1 peak is in the
scattering enhanced large tail of the HH2/LH1 peak.

The main point of the paper that the dominant current flow
through the structure occurs at k 6= 0 has been verified for
the experimental structure with a similar plot to Figure 8b)
(not shown here). A Tsu-Esaki type analytical integration
cannot possibly provide the proper insight into the transport
channels through this experimental structure. However, the
comparison in Figure 18 shows clearly that the simulation is
clearly deviating from the experimental results in the valley
currents. We attribute this to the lack of incoherent scattering
in the central RTD in our simulation. At this stage NEMO
can only simulate interface roughness, polar optical phonon,
acoustic phonon and alloy disorder scattering in a single band
model8–10. Such a single band model is however incapable to
incorporate the HH, LH and SO hole band interactions which
are the first order effects that establish the coherent channels
through the central RTD.

For pure electron transport in RTD’s it has been shown8–10

that at low temperatures bandstructure effects are negligible
and scattering processes due optical phonons and interface
roughness are dominant. As an overall conclusion to the the
comparison to experimental data we submit that at low tem-
peratures the inclusion of full bandstructure (not just single
bands) and scattering is essential to completely model the cur-
rent flow throgh a hole RTD.
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XII. SUMMARY

This work demonstrates four key findings: 1) the heavy and
light hole interaction is shown to be strong enough to result in
dominant current flow off the � zone center, 2) explicit in-
clusion of the transverse momentum in the current integration
is needed, 3) most of the current flow is due to injection from
heavy holes in the emitter, and 4) the dependence on the trans-
verse momentum angle � is weak. An analytic formula for the
current density J(k) as a function of transverse momentum k

has been derived and utilized to explain the three mechanisms
that generate off zone center current flow: 1) non-monotonic
(electron-like) hole dispersion, 2) different quantum well and
emitter effective masses, and 3) momentum dependent quan-
tum well coupling strength. The analytic expression is also
used to generate a complete I-V characteristic that compares
well to the full numerical solution based on two single trans-
verse subband dispersions at different voltages. The Fermi
level and temperature dependence on the I-V is examined.
From a comparison of a simulation to experimental data it is
concluded that the inclusion od full bandstructure as well as
incoherent scattering is needed to completely model current-
voltage charateristics in RTD’s.
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plied biases. 0.0V, 0.2V and 0.4V are depicted in solid lines, crosses,
and dashed lines respectively. The energy scales are shifted by an en-
ergy corresponding to half the applied voltage. (a) All the dispersion
curves. (b) same as (a) but, HH1 and HH2 for the 0.4V dispersion
eliminated. Spin splitting44 increases with increased bias, but gen-
eral dispersion curve remains unchanged.

APPENDIX A: DISPERSION BIAS DEPENDENCE

Figure 8b) shows the current density J(k) as a function of
bias. The streaks which correspond to high current densities
resemble the transverse momentum dispersion if the voltage
axis is scaled to energy by a factor of two. Section VI shows
through an analytic formula that the mapping of the trans-
verse dispersion to the current density J(k) is not exactly triv-
ial. Current contributions are derived from a narrow energy
range in the emitter (� �8meV:::0meV ) as the transverse
dispersion is dragged through the Fermi sea with increasing
bias. The resulting current density can be seen as a convolu-
tion of the dispersion in this energy range. To underline this
point Figure 19 shows the dispersions for three different bias
points at 0.0V, 0.2V, and 0.4V energy shifted by 0eV, 0.1eV,
and 0.2eV, respectively. One can observe that the spin split-
ting44 increases as the bias is increased due to the increasing
asymmetry in the Hamiltonian. The general shape of the dis-
persions remains the same. The strongest deviations can be
seen for higher biases for the HH1 and HH2 states. This is
attributed to the vanishing coupling to the emitter, the quan-
tum well turning more into a triangular shape, and the collecor
barrier being lowered. The imaginary bandwrapping from the
conduction band to the valence band (see for example Fig-
ure 7 in reference [ 7]) combined with the changing potential
profile change the confinement significantly with applied bias.
Such changes also have a profound influence on the resonance
linewidth as discussed in Appendix B.

APPENDIX B: RESONANCE LINEWIDTHS

Figure 20 sheds light on an the interaction of heavy hole
and light hole states and their coupling to the leads as a func-
tion of transverse momentum. Figure 20a) shows the subband
dispersion previously shown in Figures 2 and 5b) in a smaller
energy and transverse momentum range. Only the four top
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FIG. 20. (a) Same hole dispersion shown in Figure5b) in a smaller
energy and momentum range. Only the four lowest energy hole states
are shown including the spin44. (b) Resonancelinewidth of the states
in (a). The HH1 states show a variation of the resonance linewidth
of several orders of magnitude as a function of transverse momen-
tum. The mixed state (LH1+HH2) shows a reduction of resonance
width by about an order of magnitude. The resonance interact very
strongly at the anticrossing point k = 0:022. (c,d) Same as (a,b)
at a bias of 0.113V. Increased asymmetry through bias increases the
spin-splitting44 of the states and modifies the coupling to the leads
strongly.

most states including the spins44 are depicted. From our anal-
ysis in Figure 5 we can identify the two top most states as
HH1. The shape of the dispersion of the two other states sug-
gest that the should be associated with HH2 as discussed in
Section IV C with Figure 5. However, Figure 2 in Section
IV B identified the second state as LH1 by its nodal symmetry
and resonance linewidth. Figure 20b) shows the associated
resonance linewidths as a function of transverse momentum
of the first four states. The two highest states (HH1) show the
expected narrow line widths of about 10�8 eV at zero trans-
verse momentum. However, the next two states have reso-
nance and linewidths of about 5 � 10�4 eV which is indica-
tive of the light hole states. Figures 5 show an anticrossing
of HH2 and LH1 at zero transverse momentum. This strong
coupling results in the light hole like resonance width at zero
transverse momentum. We therefore label the second states in
Figure 20a) as HH2+LH1.

Figure 20a) also shows an anticrossing at a transverse mo-
mentum of about 0.022. This anticrossing in has a very dra-
matic impact on the heavy hole coupling to the leads as in-
dicated by the large increase of the resonance line width by
about three orders of magnitude compared to the zero trans-
verse momentum result. This large increase in the resonance
line width for this particular channel can result in a significant
current increase as discussed in Figure 12 in Section VII D.
This strong coupling will only have an impact if there is a
significant number of carriers at the transverse momentum of
0.025. This is the case as the Fermi level or the temperature is
increased as discussed in Section VIII.

APPENDIX C: MATERIAL AND SP3S* MODEL
PARAMETERS

The bandstructure and in particular the anisotropy of the
hole bands in GaAs and AlAs has been studied extensively
experimentally as well as theoretically39. Table I compares
several band edges and effective masses from published data
tables39 to values computed using the sp3s* second nearest
neighbor tight-binding model with the parameters listed in Ta-
ble II.

The complete parameter list of the second nearest neighbor
model used in this publication is listed for completeness in
Table II. To achieve better fits to the experimental effective
masses and bandgaps we have developed58;59 a genetic algo-
rithm based procedure. The parameters used here have been
optimized by Boykin40 using analytical insights.

TABLE I. Simulated effective masses and band edges for GaAs
and AlAs based on the sp3s* second nearest neighbor tight-binding
model compared to experimental and theoretical data from reference
[ 39].

GaAs AlAs
Property

exp. sim. %dev exp. sim. % dev
E�
g 1.4240 1.4240 0.00 3.020 3.0217 0.06

�so 0.3400 0.3664 7.76 0.300 0.3377 12.6
m�

� 0.0670 0.0679 1.31 0.150 0.1574 4.95
m�

lh[001] -0.0871 -0.0708 18.7 -0.163 -0.1475 9.52
m�

lh[011] -0.0804 -0.0662 17.7 -0.140 -0.1259 10.1
m�

lh[111] -0.0786 -0.0649 17.5 -0.135 -0.1212 10.3
m�

hh[001] -0.4030 -0.4105 1.87 -0.516 -0.4782 7.33
m�

hh[011] -0.6600 -0.6929 4.99 -1.098 -1.0788 1.75
m�

hh[111] -0.8130 -0.8750 7.63 -1.570 -1.6206 3.22
m�

so -0.1500 -0.1440 3.98 -0.240 -0.2456 2.33
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TABLE II. Second-nearest-neighbor tight-binding model param-
eters used in this paper for GaAs, AlAs, and Al0:4GaAs. All pa-
rameters are in units of eV.

Parameter GaAs AlAs Al0:4GaAs

Esa;sa(000) -8.384281 -7.520109 -8.038610
Epa;pa(000) 0.490469 0.341561 0.430906
Esc;sc(000) -2.758331 -1.797609 -2.374040
Epc;pc(000) 3.670469 2.803311 3.323610
Es�a;s�a(000) 8.590469 7.195801 8.032600
Es�c;s�c(000) 6.720469 5.719251 6.319980
Vsa;sc(

1

2

1

2

1

2
) -6.460530 -7.160000 -6.740320

Vxx(
1

2

1

2

1

2
) 2.260950 1.940000 2.132570

Vxy(
1

2

1

2

1

2
) 5.170000 4.500000 4.902000

Vsa;pc(
1

2

1

2

1

2
) 4.680000 5.072000 4.836800

Vsc;pa(
1

2

1

2

1

2
) 8.000000 8.000000 8.000000

Vs�a;pc(
1

2

1

2

1

2
) 4.650000 3.280000 4.102000

Vpa;s�c(
1

2

1

2

1

2
) 6.000000 1.750000 4.300000

�so;a=3:0 0.140000 0.140000 0.140000
�so;c=3:0 0.058000 0.008000 0.038000
Vsa;sa(110) -0.010000 -0.010000 -0.010000
Vs�a;s�a(110) 0.000000 0.000000 0.000000
Vsa;s�a(110) 0.000000 0.000000 0.000000
Vsa;xa(110) 0.050000 0.040000 0.046000
Vsa;xa(011) 0.058000 0.040000 0.050800
Vs�a;xa(110) 0.020000 0.020000 0.020000
Vs�a;xa(011) 0.040000 0.100000 0.064000
Vxa;xa(110) 0.320000 0.376900 0.342760
Vxa;xa(011) -0.050000 -0.200000 -0.110000
Vxa;ya(110) 0.640000 1.200000 1.008000
Vxa;ya(011) -1.000000 -1.200000 -1.080000
Vsc;sc(110) -0.020000 -0.010000 -0.016000
Vs�c;s�c(110) 0.000000 0.000000 0.000000
Vsc;s�c(110) 0.000000 0.000000 0.000000
Vsc;xc(110) 0.072000 0.073000 0.072400
Vsc;xc(011) 0.020000 0.040000 0.028000
Vs�c;xc(110) 0.010000 0.030000 0.018000
Vs�c;xc(011) 0.093500 0.030000 0.068100
Vxc;xc(110) 0.280000 0.495350 0.366140
Vxc;xc(011) -0.100000 -0.166950 -0.126780
Vxc;yc(110) 0.200000 0.970000 0.708000
Vxc;yc(011) -1.300000 -2.200000 -1.660000
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